US009404995B2

a2z United States Patent (10) Patent No.: US 9,404,995 B2
Jiao (45) Date of Patent: Aug. 2, 2016
(54) CALIBRATION DATA USPC oot 341/51, 65, 67,76, 77,
455/456.1-456.6
(71) Applicant: Nokia Technologies Oy, Espoo (FI) See application file for complete search history.
(72) Inventor: Xianjun Jiao, Beijing (CN) (56) References Cited
(73) Assignee: Nokia Technologies Oy, Espoo (FI) U.S. PATENT DOCUMENTS
5,973,643 A * 10/1999 Hawkes GOL1S 1/045
(*) Notice: Subject to any disclaimer, the term of this e 342/457
patent is extended or adjusted under 35 6,873,734 B1* 3/2005 Zandic.ccco..... GO6F 17/148
375/E7.016
US.C. 154(b) by 0 days. 8,604,948 B2* 12/2013 Kawasaki HO2H 1/0092
341/76
(21) Appl. No.: 14/889,576 2009/0310593 Al 12/2009 Sheynblat et al.
2011/0275408 Al 112011 Kulik
(22) PCT Filed: May 31, 2013 2015/0341804 Al* 112015 Syrjarinne HO4B 7/0689
370/252
(86) PCT No.: PCT/CN2013/076586 2015/0350002 A1* 12/2015 Jiao ..o HO04B 7/0604
- 455/41.2
§371 (o)),
(2) Date: Nov. 6, 2015 FOREIGN PATENT DOCUMENTS
R CN 1474526 2/2004
(87) PCT Pub. No.: 'WO02014/190552 CN 102209386 1012011
PCT Pub. Date: Dec. 4, 2014 OTHER PUBLICATIONS
(65) Prior Publication Data International Search Report and Written Opinion received for corre-
sponding Patent Cooperation Treaty Application No. PCT/CN2013/
US 2016/0124068 A1~ May 5, 2016 076586, dated Feb. 27, 2014, 13 pages.
(51) Int.CL * cited by examiner
GOI1S 5/00 (2006.01)
HO4W 4/02 (2009.01) Primary Examiner — Howard Williams
HO3M 7/30 (2006.01) (74) Attorney, Agent, or Firm — Nokia Technologies Oy
GOI1S 5/02 (2010.01)
HO4W 64/00 (2009.01) (57 ABSTRACT
(52) US.CL Apparatus is provided for: storing a four-dimensional matrix
CPC .o, GO1S 5/0063 (2013.01); GO1S 5/021 of fixed point calibration data; rearranging the four-dimen-
(2013.01); HO3M 7/3044 (2013.01); HO3M sional matrix of fixed point calibration data into a one-dimen-
7/3084 ’(2013 01); HO4W 4/02 (2613 01); sional sequence; calculating a differential sequence of the
T HOAW 64/00 (2013' 01)’ one-dimensional sequence; saving the differential sequence
. . . ' and a first element of the one-dimensional sequence into a
(58) Field of Classification Search binary file; and compressing the binary file using a DEFLATE

CPC GO18 5/021; GO1S 5/009; GO1S
5/0045-5/0063; GO1S 2205/008; HO3M
7/3002; HO3M 7/3044; HO3M 7/3046; HO3M

7/3071; HO4W 4/02

algorithm. Apparatus is provided for corresponding decom-
pression also.

19 Claims, 5 Drawing Sheets

Stora 4-D matrix of float type data

Cuantise 4-D matris of float type data

Store 4-D calibration data matrix

Rearrange 4-D -» 1-D sequence

US 9,404,995 B2

Sheet 1 of 5

Aug. 2, 2016

U.S. Patent

1 °9id

—h NN
ugg
: __ {
Lz~ preoghey 5o MAtozs QLL~— 611 =27 aoepa|
— — — | | Moy}
61—l feidsig £y ol wa H |22 721 82} |__|,\
44 Ad wod —
SO M0zt P24+
JHANE Wvd ~
Eiy—~H _>_<m_ s_ﬁ_um " e |- oY | Ly, 624
8LP 1] [I 9ci Il M 10858001
aip— A | | (shosssooig gig L% fi-zis w d e
h] 3 3
S N1 , sgt b (
2y g 1 & VI 2 ¢ch 20€
05

U.S. Patent

Aug. 2,2016

Sheet 2 of 5

C

Start

)

A

A

51~

Store 4-D matrix

of float type data

X

y

52 .~

Quantise 4-D matrix of float type data

A

y

53—~

Store 4-D calibration data matrix

\

y

54 A

Rearrange 4-D -» 1-D sequence

X

y

55 .~

Calculate differential sequence of 1-D

sequ

ence

A

A

56—~

Save differential sequence and 1* element of
1-D seguence in binary file

Y

y

57 .

Compress binary file using DEFLATE

A

4

58

Store comp

ressed data

A

4

S9

Send compressed data to beacon

Y

510 —

Transmit compressed calibration data

511‘,-(

End

)

FIG. 2

US 9,404,995 B2

U.S. Patent

Aug. 2, 2016

Sheet 3 of 5

“

Start)

:

52 _~

Receive binary data file

Y

S3 A

Decompress binary data file using DEFLATE

h 4

[S

Extract differe

ntial sequence and 1% element
of 1-D sequence

:

S5~

Accumulate the differential sequence using

the 1% element

h 4

S6. .~

Rearrange 1-D sequence 3 4-D matrix

h A

S7 -~

Convert fixed point = float type data

Y

S8~

Store

converted 4-D matrix

"

End)

FIG. 3

US 9,404,995 B2

U.S. Patent

Aug. 2, 2016

Sheet 4 of 5

=

h 4

Sl

Store 4-D matrix

of float type data

A 4

52~

Quantise 4-D matrix of float type data

A 4

S3._A

Store 4-D calibration data matrix

A 4

54~

Rearrange 4-D - 1-D sequence

h

y

55~

Calculate first order differential sequence of
1-D sequence

Y

56

Calculate second orde

r differential sequence

A

4

57—

Save 2™ order differe
elements of 1-D sequ

ntial sequence and 1%
ence and 1% order DS

A

y

S8 .

Compress kinary file using DEFLATE

A 4

S9.

Store compressed data

Y

510~

Send compressed data to beacon

y

A

Transmit compressed calibration data

X

y

512\/‘(

End)

US 9,404,995 B2

FiG. 4

U.S. Patent

Aug. 2, 2016

Sheet 5 of 5

US 9,404,995 B2

51““(Start)
h 4
52~ Receive binary data file
4
53._~] Decompress binary data file using DEFLATE

Y

S84 A

Extract 2™ order differential sequence and 1%
elements of 1* order

DS and 1-D sequence

h 4

S5~

Accumulate 1 order

DS using 2™ order DS
and 1* element of 1% order DS

h 4

S6~"

Accumulate 2nd order DS using 1st order DS
and 1* element of 1-D sequence

Y

57

Rearrange 1-D sequence & 4-D matrix

A 4

S8 A

Convert fixed point & float type data

Y

S99~

Store convert

ed 4-D matrix

o

End

)

FIG. 5

US 9,404,995 B2

1
CALIBRATION DATA

RELATED APPLICATION

This application was originally filed as PCT Application
No. PCT/CN2013/076586 filed May 31, 2013.

FIELD OF THE INVENTION

The present application relates to handling calibration data
and to a data structure including compressed calibration data.

BACKGROUND TO THE INVENTION

Bluetooth Low Energy (BLE) is a new wireless communi-
cation technology published by the Bluetooth SIG as a com-
ponent of Bluetooth Core Specification Version 4.0. BLE is a
lower power, lower complexity, and lower cost wireless com-
munication protocol, designed for applications requiring
lower data rates and shorter duty cycles. Inheriting the pro-
tocol stack and star topology of classical Bluetooth, BLE
redefines the physical layer specification, and involves many
new features such as a very-low power idle mode, a simple
device discovery, and short data packets, etc.

BLE technology is aimed at devices requiring a low power
consumption, for example devices that may operate with one
or more button cell batteries such as sensors, key fobs, and/or
the like. BLE can also be incorporated into devices such as
mobile phones, smart phones, tablet computers, laptop com-
puters, desktop computers etc.

SUMMARY OF EMBODIMENTS OF THE
INVENTION

Various aspects of examples of the invention are set out in
the claims.

A first aspect of the invention provides apparatus compris-
ing at least one processor, at least one memory, and computer-
readable code stored on the at least one memory, wherein the
computer-readable code when executed controls the at least
one processor to perform a method comprising:

storing a four-dimensional matrix of fixed point calibration

data;

rearranging the four-dimensional matrix of fixed point

calibration data into a one-dimensional sequence;
calculating a differential sequence of the one-dimensional
sequence;

saving the differential sequence and a first element of the

one-dimensional sequence into a binary file; and
compressing the binary file using a DEFLATE algorithm.

The computer-readable code when executed may control
the at least one processor to perform: quantising a four-di-
mensional matrix of float type calibration data to provide the
four-dimensional matrix of fixed point calibration data.

The fixed point calibration data may be signed fixed point
calibration data.

The computer-readable code when executed may control
the at least one processor to perform:

calculating a differential sequence of the one-dimensional

sequence by calculating a first order differential
sequence; and

saving the first order differential sequence and a first ele-

ment of the one-dimensional sequence into the binary
file. Alternatively, the computer-readable code when
executed may control the at least one processor to per-
form:

10

15

20

25

30

35

40

45

50

55

60

2

calculating a differential sequence of the one-dimensional
sequence by:
calculating a first order differential sequence, and
calculating a differential sequence of the first order dif-
ferential sequence to provide a second order differen-
tial sequence; and
saving the second order differential sequence, a first ele-
ment of the one-dimensional sequence and a first ele-
ment of the first order differential sequence into the
binary file.

The computer-readable code when executed may control
the at least one processor to perform:

rearranging the four-dimensional matrix of fixed point

calibration data into a one-dimensional sequence by
converting the four-dimensional matrix of fixed point
calibration data into a two-dimensional matrix and then
converting the two-dimensional matrix into the one-
dimensional sequence.

The computer-readable code when executed may control
the at least one processor to perform:

calculating the differential sequence of the one-dimen-

sional sequence by:

dividing each element of the one-dimensional sequence
by an integer multiple of two; and

calculating the differential sequence from the resulting
elements.

The computer-readable code when executed may control
the at least one processor to perform: causing transmission of
the compressed binary file.

A second aspect of the invention provides a data structure
comprising a compressed binary file produced by any of the
apparatus above.

The apparatus may comprise a transmitter, and the com-
puter-readable code when executed may control the at least
one processor to cause the transmitter to transmit the com-
pressed binary file.

A third aspect of the invention provides apparatus, com-
prising at least one processor, at least one memory, and com-
puter-readable code stored on the at least one memory,
wherein the computer-readable code when executed controls
the at least one processor to perform a method comprising:

receiving a binary data file;

decompressing the binary data file using a DEFLATE algo-

rithm to provide a differential sequence and a first ele-
ment of a one-dimensional sequence;

accumulating the differential sequence using the first ele-

ment to provide a one-dimensional sequence;
rearranging the one-dimensional sequence into a four-di-
mensional calibration data; and

storing the four-dimensional matrix of calibration data.

The computer-readable code when executed may control
the at least one processor to perform:

converting fixed point data of the one-dimensional

sequence or the four-dimensional matrix into float type
calibration data; and

storing the four-dimensional matrix of calibration data as

float type calibration data.

The computer-readable code when executed may control
the at least one processor to perform:

accumulating the differential sequence to provide the one-

dimensional sequence in a single round.

The computer-readable code when executed may control
the at least one processor to perform:

decompressing the binary data file using a DEFLATE algo-

rithm to provide a second order differential sequence, a
first element of a first order differential sequence and a
first element of the one-dimensional sequence;

US 9,404,995 B2

3

accumulating the second order differential sequence using
the first element of the first order differential sequence to
provide a first order differential sequence; and

accumulating the first order differential sequence using the
first element of the one-dimensional sequence to provide
the one-dimensional sequence.

The computer-readable code when executed may control

the at least one processor to perform:
rearranging the one-dimensional sequence into the four-

dimensional matrix of calibration data by converting the 10

one-dimensional sequence into a two-dimensional
matrix and then converting the two-dimensional matrix
into the four-dimensional matrix of calibration data.

The computer-readable code when executed may control
the at least one processor to perform:

accumulating the differential sequence to provide the one-
dimensional sequence by accumulating the differential
sequence to provide plural elements then multiplying
each element by a positive integer multiple of two to
provide the one-dimensional sequence.

A fourth aspect of the invention provides a data structure

comprising:

a binary file of compressed data that is configured to be
decompressable into a four-dimensional matrix of cali-
bration data by a method comprising:

decompressing the binary data file using a DEFLATE algo-
rithm to provide a differential sequence and a first element of
a one-dimensional sequence;

accumulating the differential sequence using the first ele-
ment to provide a one-dimensional sequence;

rearranging the one-dimensional sequence into a four-di-
mensional calibration data; and

storing the four-dimensional matrix of calibration data.

The binary file of compressed data may be configured to be
decompress able into the four-dimensional matrix of calibra-
tion data by:

converting fixed point data of the one-dimensional
sequence or the four-dimensional matrix into float type
calibration data; and

storing the four-dimensional matrix of calibration data as
float type calibration data.

The binary file of compressed data may be configured to be
decompressable into the four-dimensional matrix of calibra-
tion data by:

accumulating the differential sequence to provide the one-
dimensional sequence in a single round. Alternatively,
the binary file of compressed data may be configured to
be decompressable into the four-dimensional matrix of
calibration data by:

decompressing the binary data file using a DEFLATE algo-
rithm to provide a second order differential sequence, a
first element of a first order differential sequence and a
first element of the one-dimensional sequence;

accumulating the second order differential sequence using
the first element of the first order differential sequence to
provide a first order differential sequence; and

accumulating the first order differential sequence using the
first element of the one-dimensional sequence to provide
the one-dimensional sequence.

The binary file of compressed data may be configured to be
decompressable into the four-dimensional matrix of calibra-
tion data by:

rearranging the one-dimensional sequence into the four-
dimensional matrix of calibration data by converting the
one-dimensional sequence into a two-dimensional
matrix and then converting the two-dimensional matrix
into the four-dimensional matrix of calibration data.

15

20

25

30

35

40

45

50

55

60

4

The binary file of compressed data may be configured to be
decompressable into the four-dimensional matrix of calibra-
tion data by:

accumulating the differential sequence to provide the one-

dimensional sequence by accumulating the differential
sequence to provide plural elements then multiplying
each element by a positive integer multiple of two to
provide the one-dimensional sequence.

A fifth aspect of the invention provides a method compris-
ing:

storing a four-dimensional matrix of fixed point calibration

data;

rearranging the four-dimensional matrix of fixed point

calibration data into a one-dimensional sequence;
calculating a differential sequence of the one-dimensional
sequence;

saving the differential sequence and a first element of the

one-dimensional sequence into a binary file; and
compressing the binary file using a DEFLATE algorithm.

The method may comprise: quantising a four-dimensional
matrix of float type calibration data to provide the four-di-
mensional matrix of fixed point calibration data.

The fixed point calibration data may be signed fixed point
calibration data.

The method may comprise:

calculating a differential sequence of the one-dimensional

sequence by calculating a first order differential
sequence; and

saving the first order differential sequence and a first ele-

ment of the one-dimensional sequence into the binary
file.

The method may comprise:

calculating a differential sequence of the one-dimensional

sequence by:

calculating a first order differential sequence, and

calculating a differential sequence of the first order dif-
ferential sequence to provide a second order differen-
tial sequence; and

saving the second order differential sequence, a first ele-

ment of the one-dimensional sequence and a first ele-
ment of the first order differential sequence into the
binary file.

The method may comprise:

rearranging the four-dimensional matrix of fixed point

calibration data into a one-dimensional sequence by
converting the four-dimensional matrix of fixed point
calibration data into a two-dimensional matrix and then
converting the two-dimensional matrix into the one-
dimensional sequence.

The method may comprise:

calculating the differential sequence of the one-dimen-

sional sequence by:

dividing each element of the one-dimensional sequence
by an integer multiple of two; and

calculating the differential sequence from the resulting
elements.

The method may comprise: causing transmission of the
compressed binary file.

The method may comprise: causing a transmitter to trans-
mit the compressed binary file.

A sixth aspect of the invention provides a method compris-
ing:

receiving a binary data file;

decompressing the binary data file using a DEFLATE algo-

rithm to provide a differential sequence and a first ele-
ment of a one-dimensional sequence;

US 9,404,995 B2

5

accumulating the differential sequence using the first ele-
ment to provide a one-dimensional sequence;

rearranging the one-dimensional sequence into a four-di-
mensional calibration data; and

storing the four-dimensional matrix of calibration data.

The method may comprise:

converting fixed point data of the one-dimensional

sequence or the four-dimensional matrix into float type
calibration data; and

storing the four-dimensional matrix of calibration data as

float type calibration data.

The method may comprise: accumulating the differential
sequence to provide the one-dimensional sequence in a single
round. Alternatively, the method may comprise: decompress-
ing the binary data file using a DEFLATE algorithm to pro-
vide a second order differential sequence, a first element of a
first order differential sequence and a first element of the
one-dimensional sequence; accumulating the second order
differential sequence using the first element of the first order
differential sequence to provide a first order differential
sequence; and accumulating the first order differential
sequence using the first element of the one-dimensional
sequence to provide the one-dimensional sequence.

The method may comprise:

rearranging the one-dimensional sequence into the four-

dimensional matrix of calibration data by converting the
one-dimensional sequence into a two-dimensional
matrix and then converting the two-dimensional matrix
into the four-dimensional matrix of calibration data.

The method may comprise:

accumulating the differential sequence to provide the one-

dimensional sequence by accumulating the differential
sequence to provide plural elements then multiplying
each element by a positive integer multiple of two to
provide the one-dimensional sequence.

A seventh aspect of the invention provides a computer
program comprising machine readable instructions that when
executed by computing apparatus control it to perform any of
the above methods.

An eighth aspect of the invention provides a non-transitory
computer-readable storage medium having stored thereon
computer-readable code, which, when executed by comput-
ing apparatus causes the computing apparatus to perform a
method comprising:

storing a four-dimensional matrix of fixed point calibration

data;

rearranging the four-dimensional matrix of fixed point

calibration data into a one-dimensional sequence;
calculating a differential sequence of the one-dimensional
sequence;

saving the differential sequence and a first element of the

one-dimensional sequence into a binary file; and
compressing the binary file using a DEFLATE algorithm.

The computer-readable code when executed may control
the at least one processor to perform: quantising a four-di-
mensional matrix of float type calibration data to provide the
four-dimensional matrix of fixed point calibration data.

The fixed point calibration data may be signed fixed point
calibration data.

The computer-readable code when executed may control
the at least one processor to perform:

calculating a differential sequence of the one-dimensional

sequence by calculating a first order differential
sequence; and

saving the first order differential sequence and a first ele-

ment of the one-dimensional sequence into the binary

5

20

30

35

40

45

60

65

6

file. Alternatively, the computer-readable code when
executed may control the at least one processor to per-
form:

calculating a differential sequence of the one-dimensional

sequence by:

calculating a first order differential sequence, and

calculating a differential sequence of the first order dif-
ferential sequence to provide a second order differen-
tial sequence; and

saving the second order differential sequence, a first ele-

ment of the one-dimensional sequence and a first ele-
ment of the first order differential sequence into the
binary file.

The computer-readable code when executed may control
the at least one processor to perform:

rearranging the four-dimensional matrix of fixed point

calibration data into a one-dimensional sequence by
converting the four-dimensional matrix of fixed point
calibration data into a two-dimensional matrix and then
converting the two-dimensional matrix into the one-
dimensional sequence.

The computer-readable code when executed may control
the at least one processor to perform:

calculating the differential sequence of the one-dimen-

sional sequence by:

dividing each element of the one-dimensional sequence
by an integer multiple of two; and

calculating the differential sequence from the resulting
elements.

The computer-readable code when executed may control
the at least one processor to perform: causing transmission of
the compressed binary file.

47. Apparatus, comprising at least one processor, at least
one memory, and computer-readable code stored on the at
least one memory, wherein the computer-readable code when
executed controls the at least one processor to perform a
method comprising:

receiving a binary data file;

decompressing the binary data file using a DEFLATE algo-

rithm to provide a differential sequence and a first ele-
ment of a one-dimensional sequence;

accumulating the differential sequence using the first ele-

ment to provide a one-dimensional sequence;
rearranging the one-dimensional sequence into a four-di-
mensional calibration data; and

storing the four-dimensional matrix of calibration data.

The computer-readable code when executed may control
the at least one processor to perform:

rearranging the four-dimensional matrix of fixed point

calibration data into a one-dimensional sequence by
converting the four-dimensional matrix of fixed point
calibration data into a two-dimensional matrix and then
converting the two-dimensional matrix into the one-
dimensional sequence.

The computer-readable code when executed may control
the at least one processor to perform:

calculating the differential sequence of the one-dimen-

sional sequence by:

dividing each element of the one-dimensional sequence
by an integer multiple of two; and

calculating the differential sequence from the resulting
elements.

The computer-readable code when executed may control
the at least one processor to perform: causing transmission of
the compressed binary file.

US 9,404,995 B2

7

A second aspect of the invention provides a data structure
comprising a compressed binary file produced by any of the
apparatus above.

The computer-readable code when executed may control
the at least one processor to cause a transmitter to transmit the
compressed binary file.

Bluetooth Low Energy or BLE as used herein denotes
Bluetooth Core Specification Version 4.0 or later versions that
are backwards-compatible with Version 4.0. A BLE device or
component is a device or component that is compatible with
Bluetooth Core Specification Version 4.0.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of example embodi-
ments of the present invention, reference is now made to the
following descriptions taken in connection with the accom-
panying drawings in which:

FIG. 1 is a schematic diagram of a system according to
aspects of the invention including components according to
aspects of the invention and operating according to aspects of
the invention;

FIG. 2 is a flow chart illustrating operation of a server
and/or a beacon included in FIG. 1 according to a first set of
embodiments of the invention;

FIG. 3 is a flow chart illustrating operation of a mobile
device included in the system of FIG. 1 according to the first
set of embodiments of the invention;

FIG. 4 is a flow chart illustrating operation of a server
and/or a beacon included in FIG. 1 according to a second set
of embodiments of the invention; and

FIG. 5 is a flow chart illustrating operation of a mobile
device included in the system of FIG. 1 according to the
second set of embodiments of the invention;

DETAILED DESCRIPTION OF VARIOUS
EMBODIMENTS

BLE technology has been proposed to be used in high
accuracy indoor positioning (HAIP) systems. HAIP with
BLE uses an array of phased antennas to calculate angle-of-
departure or angle-of-arrival of a signal. The principles
behind calculating the angle-of-departure or angle-of-arrival
are described in the prior art.

There are two main options for positioning a mobile device
or beacon in a BLE HAIP system. The same applies to other
MIMO antenna systems, and to other beamforming systems.

In a first option, the mobiles/tags transmit a BLE position-
ing packet, which is received at a base station (which can be
called a locator) including an antenna array. The base station
(or some other device) measures the angle-of-arrival (both
azimuth and elevation angles) of the signal using samples of
the positioning packet received at different elements of the
antenna array, and consequently calculates the position of the
mobile/tag. This can be called network-centric positioning.
The network-centric approach is limited by capacity.

In a second option, a base station includes an antenna array
and transmits a BLE positioning packet from different ele-
ments of the antenna array in a way that allows the mobile/tag
to calculate the angle-of-departure (both azimuth and eleva-
tion angles) of the signal from the base station. The base
station here can be termed a beacon. This can be termed
mobile-centric positioning. The mobile-centric case is advan-
tageous from the capacity point of view as any number of
devices can measure and use broadcast signals for positioning
purposes.

15

30

35

40

45

8

A base station or beacon may be able to operate according
to both options.

It is the mobile-centric option that is of primary interest in
the following, although of course a beacon may operate in the
mobile-centric mode as well as the network-centric mode.

FIG. 1 shows a system according to embodiments of the
invention. The system 10 includes a first device 11 and a
second device 12. It also includes first to nth BLE beacons
30a,30510 30n, each of which may be referred to as a beacon
30. The system also includes a server 40. The first and second
devices 11, 12 are mobile or portable and their locations can
be tracked.

Briefly, the BLE beacons 30 are based at different locations
within a building or complex of buildings and periodically
transmit two different messages. These messages are, firstly,
AoD positioning packets and, secondly, positioning adver-
tisement messages. Both the AoD positioning messages and
the positioning advertisement messages transmitted by a
given beacon 30 include an identifier that is unique to that
beacon 30 within the building.

Each of the BLE beacons 30 includes multiple antenna
elements and transmits the AoD positioning packets includ-
ing a certain packet tail called AoD extension. The beacon has
multiple antenna elements which are used sequentially during
the transmission of the AoD extension. The sequence of
antenna elements involves switching between them in a pre-
defined order. Each of the first and second devices 11, 12 is
able to receive an AoD positioning packet from the BLE
beacons 30 and calculate, from parameters of the received
signal at the part corresponding to the AoD extension, a
bearing from the beacon 30 at which the AoD positioning
packet was received at the device 11, 12. The bearing is able
to be calculated because of the form given to the signal
transmitted along the bearing by the multiple antenna ele-
ments.

The positioning advertisement messages include informa-
tion designating the location and orientation of the beacon 30.
The location of the beacon can be given e.g. in Cartesian
coordinates, Polar coordinates, Spherical coordinates or
without coordinates (enabling positioning just relative to the
beacon). The positioning advertisement messages may be
sent from only a single element of the antenna 116. The
positioning advertisement messages are received at the
devices 11, 12.

Both AoD positioning packets and positioning advertise-
ment messages are transmitted periodically, although the
AoD positioning packets are transmitted more frequently.

The devices 11, 12 then can calculate their position using
information designating the location and orientation of the
beacon and the calculated bearing. Devices 11, 12 can calcu-
late their locations having received an AoD positioning
packet from one beacon with a reasonable degree of accuracy.
Devices 11, 12 can calculate their locations with greater accu-
racy by triangulating information relating to AoD positioning
packets received from two or more beacons, although the
accuracy achieved using only one beacon typically is suffi-
cient. Devices 11, 12 are able to calculate their location with-
out network assistance.

The first device 11 includes a BLE module 13, which
operates according to the BLE standard. Each of the BLE
beacons 30 also includes a BLE module that operates accord-
ing to the BLE standard.

The first device 11 includes a processor 112. The processor
112 is connected to volatile memory such as RAM 113 by a
bus 118. The bus 118 also connects the processor 112 and the
RAM 113 to non-volatile memory, such as ROM 114. A
communications interface or module 115 is coupled to the bus

US 9,404,995 B2

9
118, and thus also to the processor 112 and the memories 113,
114. A BLE module 13 is coupled to the bus 118, and thus also
to the processor 112 and the memories 113, 114. An antenna
116 is coupled to the communications module 115 and the
BLE module 13, although each may instead have its own
antenna. Within the ROM 114 is stored a software application
117. The software application 117 in these embodiments is a
navigation application, although it may take some other form.
An operating system (OS) 120 also is stored in the ROM 114.

The first device 11 may take any suitable form. Generally
speaking, the first device may comprise processing circuitry
112, including one or more processors, and a storage device
114, 113, comprising a single memory unit or a plurality of
memory units. The storage device 114, 113 may store com-
puter program instructions that, when loaded into the process-
ing circuitry 112, control the operation of the first device 11.

The BLE module 13 may take any suitable form. Generally
speaking, the BLE module 13 of the first device 11 may
comprise processing circuitry, including one or more proces-
sors, and a storage device comprising a single memory unit or
a plurality of memory units. The storage device may store
computer program instructions that, when loaded into the
processing circuitry, control the operation of the BLE module
13.

The first device it also comprises a number of components
which are indicated together at 119. These components 119
may include any suitable combination of a display, a user
input interface, other communication interfaces (e.g. WiFi,
etc.), a speaker, a microphone, and a camera. The components
119 may be arranged in any suitable way.

The BLE module 13 includes a communication stack that
is implemented at least partly in software using processor and
memory resources (not shown), all of which are included
within the BLE module 13. The BLE module 13 is config-
ured, when enabled by the navigation application 117, to
calculate the location of the host device 11 as described
above, and to report the location to the navigation application
117.

The navigation application 117 is configured to control the
BLE module 13 to switch between a positioning mode in
which it calculates the position of the host device 11, 12 and
a non-positioning mode in which it does not calculate the
position of the host device 11, 12, as required by the naviga-
tion application 117.

The navigation application 117 may for instance control
the BLE module to reside in the positioning mode when
positioning has been enabled by the user or by the operating
system 120 and when outdoor positioning (e.g. GPS) is
unavailable, and to reside in the non-positioning mode other-
wise. Alternatively, the navigation application 117 may for
instance control the BLE module to reside in the positioning
mode when positioning has been enabled by the user or by the
operating system 120 and when BLE positioning advertise-
ment messages have been received within a certain time
period (e.g. 10 minutes before the current time), and to reside
in the non-positioning mode otherwise.

The second device 12 may be configured and operate in the
same way as the first device 11.

The devices 11, 12 may be mobile phones, smart phones,
tablet computers, laptop computers, cameras, mp3-players,
equipment integrated within vehicles, etc. The devices 11, 12
may be based around any suitable operating system, for
instance the Symbian operating system or Microsoft Win-
dows operating system, although any other operating system
may instead be used. The devices 11, 12 may run different
operating systems.

20

25

30

35

40

45

10

The beacon 30, for instance the first beacon 31a, includes
a BLE module 125, an antenna 126, a source of power 130, a
processor 112, RAM 123, ROM 124, software 127 and a bus
128 are constituted and connected in any suitable way. The
antenna 126 is a multi-element antenna, as described below.

The ROM 124 of the beacon 30 also stores information
129. The information 129 includes an identifier that identifies
the beacon, the model number of the beacon, the location of
the beacon, and the orientation of the beacon.

The beacon 30 includes a communication interface 108,
using which communications can be received from the server
40. The server 40 may be connected either directly or indi-
rectly with the beacon 30. The server 40 may be connected
with the beacon 30 by Ethernet.

The source of power 130 may be for instance a power-over-
Ethernet source, a battery, or mains power. The source of
power 130 powers the BLE module 121 and any other com-
ponents of the beacon 30.

The BLE module 121 of the beacon 30 is both a transmitter
and a receiver.

Each of the BLE beacons 30 includes multiple antenna
elements (indicated together at 126 in the Figure) and trans-
mits AoD positioning messages using these multiple antenna
elements simultaneously. By transmitting the AoD position-
ing messages in this way, a device 11, 12 can calculate from
parameters of the received signal that included the AoD posi-
tioning message an angle (actually, both azimuth and eleva-
tion angles) from the beacon 30 at which the device 11, 12 is
located.

Each of the BLE beacons 30 also is configured to transmit
information designating the location and orientation of the
beacon 30. This information forms part of the positioning
advertisement messages.

Using calibration data describing calibration of the multi-
element antenna 126, devices 11, 12 can calculate their loca-
tions having received an AoD positioning packet from one
beacon 30 with a reasonable degree of accuracy. Devices 11,
12 can calculate their locations with greater accuracy by
triangulating or by combining location information relating
to AoD positioning message received from two or more bea-
cons, although the accuracy achieved using only one beacon
typically is sufficient. As described below, devices 11, 12 may
be able to calculate their location without network assistance.

Positioning advertisement messages may be transmitted by
each beacon 30 periodically, for instance at 1 Hz (1 second
intervals) or 2 Hz (0.5 second intervals) or at intervals defined
by some component within the system. They may alterna-
tively be transmitted on request of some component within
the system. In BLE, advertisement messages are called
ADV_IND. Each includes a packet data unit (PDU), called an
ADV_IND PDU. Response messages are called
BCST_REQ. Each includes a packet data unit (PDU), called
a BCST_REQ PDU. A device may respond to receiving an
ADV_IND PDU by transmitting a response message
BCST_REQ PDU, following which the beacon will transmit
a response message BCST_RSP PDU.

In this specification, the terms ‘message’ and ‘packet’ are
used interchangeably since they are intrinsically linked.

AoD positioning messages may be transmitted by each
beacon 30 periodically, for instance at 20 Hz (50 millisecond
intervals). Clearly, devices 11, 12 can calculate their positions
at the same periodicity, or the devices 11, 12 can filter mul-
tiple measurements for better accuracy. Such a frequency of
transmission of AoD positioning messages allows rapid and
reliable positioning updates for the devices 11, 12. In BLE,
AoD positioning advertisement messages are called AoD_
BCST_IND packets.

US 9,404,995 B2

11

The beacon 30 may take any suitable form. Generally
speaking, the beacon 30 may comprise processing circuitry,
including one or more processors, and a storage device, com-
prising a single memory unit or a plurality of memory units.
The storage device may store computer program instructions
that, when loaded into the processing circuitry, control the
operation of the beacon 30.

The other beacons 305 . . . 30z may be configured and
operate in the same way as the first beacon 30a. The other
beacons are different to the first beacon 30a at least in that the
information 129 stored in the ROM 124 includes a different
identifier and a different location, and may also include a
different orientation of the beacon.

The server 40 includes a processor 412. The processor 412
is connected to volatile memory such as RAM 413 by a bus
418. The bus 418 also connects the processor 112 and the
RAM 413 to non-volatile memory, such as ROM 414. A
communications interface 415 is coupled to the bus 418, and
thus also to the processor 412 and the memories 413, 414. The
interface 415 is connected to the radio network 50 in any
suitable way, for instance via the Internet or a local network.
Within the ROM 414 is stored a software application 417. An
operating system (OS) 420 also is stored in the ROM 414.
Within the ROM 414 is also stored one or more sets of
calibration data 422.

An output device such as a display 419 may be provided
with the server 40. An input device such as a keyboard 421
may be provided with the server 40.

The server 40 may take any suitable form. Generally speak-
ing, the server 40 may comprise processing circuitry 412,
including one or more processors, and a storage device 414,
413, comprising a single memory unit or a plurality of
memory units. The storage device 414, 413 may store com-
puter program instructions that, when loaded into the process-
ing circuitry 412, control the operation of the server 40.

Some further details of components and features and alter-
natives for them will now be described.

The computer program instructions 117 may provide the
logic and routines that enables the first device 11 to perform
the functionality described below. The computer program
instructions 117 may be pre-programmed into the first device
11. Alternatively, they may arrive at the first device 11 via an
electromagnetic carrier signal or be copied from a physical
entity such as a computer program product, a non-volatile
electronic memory device (e.g. flash memory) or a record
medium such as a CD-ROM or DVD. They may for instance
be downloaded to the first device 11 from a server, for
instance the server 40 but possibly another server such as a
server of an application marketplace or store.

The processing circuitry 112,122, 412 may be any type of
processing circuitry. For example, the processing circuitry
may be a programmable processor that interprets computer
program instructions and processes data. The processing cir-
cuitry may include plural programmable processors. Alterna-
tively, the processing circuitry may be, for example, program-
mable hardware with embedded firmware. The processing
circuitry or processor 112, 122, 412 may be termed process-
ing means.

Typically, the BLE modules 13, 121 each comprise a pro-
cessor coupled connected to both volatile memory and non-
volatile memory. The computer program is stored in the non-
volatile memory and is executed by the processor using the
volatile memory for temporary storage of data or data and
instructions.

The term ‘memory’ when used in this specification is
intended to relate primarily to memory comprising both non-
volatile memory and volatile memory unless the context

10

15

20

25

30

35

40

45

50

55

60

65

12

implies otherwise, although the term may also cover one or
more volatile memories only, one or more non-volatile
memories only, or one or more volatile memories and one or
more non-volatile memories. Examples of volatile memory
include RAM, DRAM, SDRAM etc. Examples of non-vola-
tile memory include ROM, PROM, EEPROM, flash memory,
optical storage, magnetic storage, etc.

Each BLE module 13, 121 may be a single integrated
circuits. Each may alternatively be provided as a set of inte-
grated circuits (i.e. a chipset). The BLE modules 13, 121 may
alternatively be hardwired, application-specific integrated
circuits (ASIC).

The communication interface 115 may be configured to
allow two-way communication with external devices and/or
networks. The communication interface may be configured to
communicate wirelessly via one or more of several protocols
such as Global System for Mobile Communications (GSM),
Code Division Multiple Access (CDMA), Universal Mobile
Telecommunications System (UMTS) and IEEE 712.11 (Wi-
Fi). Alternatively or additionally, the communication inter-
face 115 may be configured for wired communication with a
device or network.

The apparatus 11,12, 40, 30 may comprise further optional
software components which are not described in this specifi-
cation since they may not have direct interaction with the
features described.

The BLE beacons 30 are distributed around a building or
premises. For instance a first beacon 30a may be located in a
canteen, a second beacon 305 may be located in a reception
area, and so on. The first and second beacons 30a and 305 can
be referred to as beacons 30. Beacons 30 do not need to
provide complete coverage of a building, but advantageously
are provided to provide good coverage of all key locations
within the building.

It is possible in a HAIP system to have a flat array antenna
126 with P elements, with each element having two separate
feeds for orthogonal polarisations. K channels are con-
structed to transmit or receive signal through the array
antenna, where K=2*P+1. The factor of 2 is derived from
there being two feeds with orthogonal polarisations per
antenna element. The addition of 1 is included because one
extra channel is constructed by combining the two different
polarisations of a central element. Thus, a P=7 element
antenna provides K=15 channels. In a P=7 element antenna,
six elements may be arranged in a circle around a central
antenna element.

To perform positioning function, a calibration matrix ofthe
array antenna is firstly obtained by measurement in a test
chamber.

By dividing the azimuth angle range 0~360 degree into M
grids and the elevation angle range 0~90 degree into N grids,
cross polarisation calibration source (vertical polarisation
and horizontal polarisation) signals are recorded in every
channel and at every azimuth and elevation angle grid. Each
recorded signal is represented by I and Q values. Here, the
calibration matrix is a four dimensional (4-D) matrix C[4][M]
[N][K]. The first dimension of this four-dimensional matrix
has a size of 4, where the first two elements in the first
dimension respectively represent 1 and Q values from the
vertical polarised source and the following two elements in
the first dimension respectively represent I and Q values from
the horizontal polarised source. The four-dimensional matrix
C[4][M][N][K] canbe split into two three-dimensional matri-
ces by representing each pair of real and imaginary data
elements with one complex data element. The result is a
three-dimensional matrix for the vertical polarised source,
which can be represented as Cv[M][N][K], and a three-di-

US 9,404,995 B2

13

mensional matrix for the horizontal polarised source, which
can be represented as Ch[M][N][K]. In summary, the calibra-
tion matrix measurement is performed by recording array
responses of all channels when signal are incident from all
possible azimuth and elevation angles.

When performing positioning in mobile-centric mode, the
signal is transmitted from the beacon 30 to the mobile devices
11, 12. A positioning algorithm running in the mobile device
11, 12 receives K channel signals and searches for the most
likely K-dimension data in the calibration matrix. From this,
the mobile device 11, 12 makes a decision as to which posi-
tion in the azimuth and elevation grid the signal originates.

In mobile-centric positioning mode, the system works as
an inverse like form of calibration matrix measurement. The
array-antenna 126 broadcasts a continuous wave, which can
be viewed as ‘1’ in the baseband complex model before
modulation, from each channel sequentially, in a particular
switching pattern. The mobile device 11, 12 receives the
signals emitted from all channels within a period of time.
According to the reciprocal theory of radio wave propagation,
the mobile device 11, 12 actually receives the response of all
channels just like the recorded response in the chamber mea-
surement. The positioning algorithm running within the
mobile device 11, 12 performs correlation between the
received signal vector and the calibration matrix.

It will be appreciated here that the calibration matrix has
N*M signal vectors, which represent the array response from
N*M azimuth-elevation angle pairs. Thus, N*M correlations
are performed and from the most similar vector the corre-
sponding azimuth-elevation angles pair can be found.

The calibration data can be substantial, typically of the
order of a few Megabytes. A mobile device needs to obtain the
calibration data for a multi-element antenna 126 only once,
and this calibration data can then be used when positioning
using signals received from beacons having the same multi-
element antenna configuration.

There are a number of options for provisioning mobile
devices with the calibration data. For some mobile devices,
such as simple tags, configuring the tag with the calibration
data during manufacture may be the best option. For more
sophisticated devices, providing the calibration data on a
server (e.g. the server 40) that the mobile device can access
through cellular radio, Wi-Fi etc. may be the best option. BLE
has very limited bandwidth, and communicating the calibra-
tion data using BLE would take many tens of seconds and thus
would generally not be acceptable.

Embodiments of this invention provide a scheme whereby
the calibration data can be provisioned to mobile devices
using a low bandwidth resource, such as BLE, in a mobile-
centric positioning system.

In brief, the embodiments involve compressing calibration
data in a way that produces compressed calibration data that
is particularly easy to decompress. Thus a positioning device
can reconstruct the calibration matrix quickly and easily,
using simple processing operations. Additionally, the ratio of
compression of the calibration data can be relatively high,
resulting in less data transmission, with very little loss in
quality.

Compression of the calibration data may be performed by
the beacon 30 or it may instead be performed within a net-
work or infrastructure externally to the beacon 30, for
instance by the server 40. Compression of the calibration data
need only be performed once. Operation of the beacon 30 or
the server 40 in compressing calibration data will now be
described with reference to FIG. 2.

FIG. 2 is described mostly with reference to the server 40.
The steps carried out by the server are performed by the

25

30

35

40

45

50

55

65

14

processor(s) 412 using the RAM 413 under control of the
software application 417 stored in the ROM 414. Steps per-
formed by the beacon involve corresponding components.

The operation starts at step S1. Here, the server 40 stores
the four-dimensional matrix of calibration data C[4][M][N]
[K]. This matrix of calibration data has the form described
above, and is stored in the ROM 414 as part of the sets of
calibration data 422. As will be seen, the sets of calibration
data 422 include the uncompressed four-dimensional matri-
ces of calibration data as well as compressed calibration data.

At step S2, the server 40 quantises the stored four-dimen-
sional matrix of float type data. Step S2 involves converting
the data from float type data to signed, fixed point data. Each
element of the matrix is quantised separately. The signed
fixed point data may for instance be 8 bit data, of which 1 bit
is the sign and 7 bits is the magnitude. This step reduces the
amount of data, i.e. it makes the calibration matrix data
smaller in size. The size reduction depends on the nature of
the float type data in the original matrices. For 32 bit float type
data, the size reduction is a factor of four, i.e. the quantised
data includes a fourth the number of bits of the pre-quantised
data. The result is a four-dimensional matrix of signed, fixed
point data.

The quantising step does not reduce the quality of the data
significantly because the antenna response data (the calibra-
tion data) does not have as high a dynamic as is offered by
float type data. The 8 bits signed integer resulting from the
quantisation can handle almost all of the needed dynamic.

In other embodiments, the antenna response data (calibra-
tion data) is signed data, instead of float type data. In these
embodiments, the quantising step can be omitted.

At step S3, the quantised four-dimensional calibration data
matrix is stored in memory, such as the ROM 414 of the
server.

At step S4, the four-dimensional calibration data matrix is
rearranged into a one-dimensional sequence. This can be
performed in any suitable way. In some embodiments, this
involves conversion of the four-dimensional matrix into a
two-dimensional matrix, and then converting two-dimen-
sional matrix into a one-dimensional sequence. One particu-
lar method for achieving this conversion is described later in
the specification.

At step S5, a differential sequence of the one-dimensional
sequence provided by step S4 is calculated. This step may be
performed in any suitable way, and some examples are pro-
vided later in the specification. Generally speaking, calcula-
tion of the differential sequence involves calculating the dif-
ference between sequential values, and providing the
differences between the successive values as a differential
sequence.

At step S6, the differential sequence calculated in step S5 is
saved in memory along with the first element of the one-
dimensional sequence that was provided by step S4.

Step S6 involves saving the differential sequence and the
first element of the one-dimensional sequence in a binary file
in a memory of the server 40.

Atstep S7, the binary file is compressed using a DEFLATE
algorithm. This can be performed in any suitable way.
DEFLATE algorithms are well known in the art, and
examples are found at RFC 1951, RFC 1952, for example. As
is known, a DEFLATE algorithm uses a combination of the
LZ77 algorithm and Huffman coding. Various implementa-
tions of the deflate algorithm are available, including GNU
open source tools gzip and 7-zip.

The compressed data is stored by the server 40 at step S8 as
one of the sets of calibration data 422.

US 9,404,995 B2

15

At step S9, the compressed data is sent by the server 40 to
the beacon 30.

At step S10, the beacon 30 transmits the compressed cali-
bration data received from the server. The transmission of the
compressed calibration data from the beacon 30 to the mobile
device 11, 12 may be performed in any suitable way. The
compressed calibration data may be broadcast, so that it can
be received by multiple devices 11, 12 simultaneously, or it
may be addressed to a target mobile device 11, 12. In the latter
case, the compressed calibration data may be transmitted as
part of a connection session between the beacon 30 and the
mobile device 11, 12.

The operation ends at step S11.

The result of the operation of FIG. 2 is calibration data that
has been compressed in a certain way being stored in memory
and then transmitted. In the case of the server 40 performing
the compression operation, the compressed calibration data is
stored in a memory (the ROM 414) of the server 40. After-
wards, the compressed calibration data is communicated to
and stored in each of the beacons 30 having the antenna
configuration to which the calibration data relates. The com-
pressed calibration data is stored in these embodiments in the
information part 129 of the ROM 124 of the appropriate
beacons 30. Thus, the beacons 30 are provided with the com-
pressed calibration data that indicates the characteristics of
the antenna 126 included within the beacon. If the beacon 30
performs the compression operation of FIG. 2, the com-
pressed calibration data immediately resides in the beacon 30,
in particular in the ROM 124.

Operation of the mobile device 11, 12 in handling com-
pressed calibration data will now be described with reference
to FIG. 3. The steps described are performed by the processor
112 using the RAM 113 under control of the software appli-
cation 117 stored in the ROM 114. Reception involves the
BLE module 125 and the antenna 126. This operation may be
performed in parallel with other operations within the mobile
device 11, 12.

The operation starts at step S1. At step S2, the compressed
binary data file is received from the beacon. The received data
file is the one that is transmitted by the beacon 30 at step S10
of FIG. 2.

At step S3, the mobile device 11, 12 decompresses the
binary data file using the DEFLATE algorithm. The algorithm
used by the mobile device 11, 12 is the same as that used by
the server 40 when compressing the binary file at step S7 of
FIG. 2.

Atstep S4, the mobile device 11, 12 extracts the differential
sequence and the first element of the one-dimensional
sequence from the decompressed binary data file. This pro-
vides the data that was saved by the server 40 at step S6 of
FIG. 2.

At step S5, the mobile device 11, 12 accumulates the dif-
ferential sequence extracted at step S4 using the first element
of the one-dimensional sequence that was also extracted at
step S4. The result is an accumulated one-dimensional
sequence that is the same as the sequence created by the
server 40 at step S4 of FIG. 2.

At step S6, the mobile device 11, 12 rearranges the one-
dimensional sequence into a four-dimensional matrix. This
may be performed in any suitable way.

At step S7, the mobile device 11, 12 converts the signed
fixed point data in the received layer/dimension of matrices
into float type data and stores the result in memory, e.g. the
ROM 124.

It will be appreciated that steps S6 and S7 can be reversed,
so the conversion happens before the rearrangement.

10

15

20

25

30

35

40

45

50

55

60

65

16

At step S8, the resulting four-dimensional matrix of float
type calibration data is stored in the ROM 114.

The operation ends at step S9.

The resulting calibration data matrix can be used by the
mobile device 11, 12 in calculating a bearing to the mobile
device 11, 12 from a beacon 30 when the beacon transmits a
positioning packet. Using the calibration data to calculate the
bearing involves identifying a maximum correlation.

An alternative operation for compression of the calibration
data will now be described with reference to FIG. 4. This
operation may be performed by the beacon 30 or it may
instead be performed within a network or infrastructure exter-
nally to the beacon 30, for instance by the server 40. Com-
pression of the calibration data need only be performed once.

FIG. 4 is described mostly with reference to the server 40.
The steps carried out by the server are performed by the
processor(s) 412 using the RAM 413 under control of the
software application 417 stored in the ROM 414. Steps per-
formed by the beacon involve corresponding components.

Steps S1 to S5 are the same as steps S1 to S50f FIG. 2. The
above description of those steps applies to FIG. 4, and is
omitted here to avoid unnecessary repetition.

Step S6 follows step S5. In step S6, a second order difter-
ential sequence is calculated. The second order differential
sequence is a differential sequence of the (first order) differ-
ential dimensional sequence provided by step S5. This step
may be performed in any suitable way, and some examples
are provided later in the specification. Generally speaking,
calculation of the differential sequence involves calculating
the difference between sequential values, and providing the
differences between the successive values as a differential
sequence.

At step S7, the second order differential sequence calcu-
lated in step S6 is saved in memory along with the first
element of the one-dimensional sequence that was provided
by step S4 and the first element of the first order differential
sequence that was provided by step S5. Step S7 involves
saving the differential sequence and the two first elements in
a binary file in a memory of the server 40. For antenna cali-
bration data, the size of the binary file resulting from step S7
is smaller than the size of the binary file resulting from step S6
of FIG. 2.

Steps S8 to S12 of FIG. 4 are the same as steps S7 to S11 of
FIG. 2 respectively. The above description of those steps
applies to FIG. 4, and is omitted here to avoid unnecessary
repetition.

The result of the operation of FIG. 4 is calibration data that
has been compressed in a certain way being stored in memory
and then transmitted. In the case of the server 40 performing
the compression operation, the compressed calibration data is
stored in a memory (the ROM 414) of the server 40. After-
wards, the compressed calibration data is communicated to
and stored in each of the beacons 30 having the antenna
configuration to which the calibration data relates. The com-
pressed calibration data is stored in these embodiments in the
information part 129 of the ROM 124 of the appropriate
beacons 30. Thus, the beacons 30 are provided with the com-
pressed calibration data that indicates the characteristics of
the antenna 126 included within the beacon. If the beacon 30
performs the compression operation of FIG. 2, the com-
pressed calibration data immediately resides in the beacon 30,
in particular in the ROM 124.

Operation of the mobile device 11, 12 in handling such
compressed calibration data will now be described with ref-
erence to FIG. 5. The steps described are performed by the
processor 112 using the RAM 113 under control of the soft-
ware application 117 stored in the ROM 114. Reception

US 9,404,995 B2

17
involves the BLE module 125 and the antenna 126. This
operation may be performed in parallel with other operations
within the mobile device 11, 12.

Some steps of the operation of FIG. 5 are the same as steps
in the operation of FIG. 3. However, the data processed is
different in some steps, so the operation of FIG. 5 will now be
described in full.

The operation starts at step S1. At step S2, the compressed
binary data file is received from the beacon. The received data
file is the one that is transmitted by the beacon 30 at step S11
of FIG. 4.

At step S3, the mobile device 11, 12 decompresses the
binary data file using the DEFLATE algorithm. The algorithm
used by the mobile device 11, 12 is the same as that used by
the server 40 when compressing the binary file at step S8 of
FIG. 4.

At step S4, the mobile device 11, 12 extracts the second
order differential sequence, the first element of the one-di-
mensional sequence and the first element of the first order
differential sequence from the decompressed binary data file.
This provides the data that was saved by the server 40 at step
S7 of FIG. 4.

At step S5, the mobile device 11, 12 accumulates the sec-
ond differential sequence extracted at step S4 using the first
element of the first order differential sequence. The resultis a
first order differential sequence that is the same as the differ-
ential sequence created by the server 40 at step S5 of FIG. 4.

At step S6, the mobile device 11, 12 accumulates the first
differential sequence resulting from step S5 using the first
element of the one-dimensional sequence that was extracted
atstep S4. The result is a one-dimensional sequence that is the
same as the sequence created by the server 40 at step S4 of
FIG. 4.

At step S7, the mobile device 11, 12 rearranges the one-
dimensional sequence into a four-dimensional matrix. This
may be performed in any suitable way.

At step S8, the mobile device 11, 12 converts the signed
fixed point data in the received layer/dimension of matrices
into float type data and stores the result in memory, e.g. the
ROM 124.

It will be appreciated that steps S7 and S8 can be reversed,
so the conversion happens before the rearrangement.

At step S9, the resulting four-dimensional matrix of float
type calibration data is stored in the ROM 114.

The operation ends at step S10.

The resulting calibration data matrix can be used by the
mobile device 11, 12 in calculating a bearing to the mobile
device 11, 12 from a beacon 30 when the beacon transmits a
positioning packet.

The compression operations described with reference to
FIGS. 2 and 4 are almost lossless, that is to say that there is
almost no loss of calibration data after decompression has
been performed. As such, there is very little degradation in the
accuracy of bearing calculation dependent on the data in the
calibration data matrix. However, the compressed calibration
matrix data is much smaller in size than the uncompressed
calibration matrix data. Compression ratios are provided later
in this specification.

The reconstructed four-dimensional matrix stored in the
mobile device 11, 12 at step S8 of FIG. 3 or step S9 of FIG. 5
is the same size as the four-dimensional matrix stored by the
server 40 at step S1 of FIGS. 2 and 4. This matrix is the one
that is used directly by the mobile device 11 to calculate
bearings. The mobile device 11, 12 is configured, when not in
a positioning mode, to store the binary file received at step S2
of FIG. 3 or FIG. 5 or the decompressed binary file provided
by step S3 of those Figures in the memory, instead of storing

20

35

40

45

55

18

the decompressed calibration data matrix. This reduces
memory usage in the mobile device 11,12 whilst allowing the
mobile device 11, 12 to reconstruct the decompressed cali-
bration data matrix when needed, for instance when the
mobile device enters positioning mode or when the naviga-
tion application is opened.

In the above discussions of processing calibration data, a
four dimensional matrix C[4][M][N][K] is discussed. In the
fourth dimension, this includes two layers for each of real and
imaginary data elements. Alternatively, the four-dimensional
matrix can be provided with two layers in the fourth dimen-
sion, one layer Cv[M][N][K] of complex vectors for the ver-
tically polarised source, and a second layer Ch[M][N][K] of
complex vectors for the horizontally polarised source

There are a number of advantages of the above-described
features, and some will now be described.

The compression technique used does not require compli-
cated or processor-intensive decompression at the mobile
device 11, 12. Instead, only deconstruction of a differential
sequence and accumulation operations are needed to perform
decompression of the calibration data matrix.

The compression technique is advantageous as regards
network/infrastructure operation also. In particular, the com-
pression needs to be performed only once. Storage of the
compressed calibration data is straightforward for beacons 30
as well as for other elements of the network, for instance the
server 40.

The reduction in size of the calibration data resulting from
the compression allows it to be transmitted quickly, even over
alow bandwidth channel. Because decompression is straight-
forward and thus quick, this allows a decompressed calibra-
tion data matrix to be obtained relatively quickly by a
receiver, and in most cases more quickly than would have
been possible if the uncompressed calibration data had been
transmitted directly.

The reduction in size of the calibration data also reduces
bandwidth utilisation of the channel between the beacon 30
and the mobile device. It also reduces power consumption of
the mobile device 11, 12.

The compression ratio provided can be relatively high with
avery low reduction in bearing accuracy (high reconstruction
quality). Because the compression is almost lossless (there is
a small amount of degradation provided by quantisation error,
but not by any other part of the compression process), there is
very little reduction in accuracy of bearing calculation at the
mobile device.

The compression scheme compares favourably to (prior
art) codebook based schemes, at least because there is no need
for the mobile device 11, 12 (nor the server 40 nor the beacon
30) to store codebooks.

It compares favourably also to image compression
schemes, which can require complicated decompression pro-
cessing and thus are not suitable for thin clients for example.

The use of the DEFLATE algorithm avoids the need to
develop new compression and decompression algorithms.
Moreover, because the DEFLATE algorithm is so well
known, there are implementations that are highly optimised
for common hardware, including PowerPC, ARM, MIPS etc.

Some specific examples will now be described with refer-
ence to tests that have been performed.

Taking a calibration and antenna configuration of M=180,
N=46, and K=15 as an example, concrete compression steps
and results are as follows.

The quantising step S2 of FIGS. 2 and 4 can be performed
as described below. In this step, the float type calibration data
matrix C[4][N][M][K] is quantised to signed fixed point type

US 9,404,995 B2

19

data. Taking 8 bit signed fixed point type as an example,
quantisation is performed as follows.

Firstly, finding the maximum absolute value among all
4*N*M*K elements. The maximum absolute value is noted
as A.

Secondly, calculating a scale value: G=((2"(numbits—
1))-1Y/ A, where numbits=8.

Thirdly, each element is processed by: C[i][n]|[m][k]=C[i]
[[m][k]*G.

Lastly, using forced type conversion in C language (for
instance), float to fixed point quantization converts each ele-
ment from float to 8 bit signed integer.

Next, at step S4 of FIGS. 2 and 4, the four-dimensional
matrix C[4][N][M][K] of signed, fixed point data is converted
into a two-dimensional matrix E[MM][NN], where
NN=K*N and MM=4*M.

This can be performed in any suitable way, for instance
using software based on the pseudo code:

For i=0:3
For n=0:N-1
For m=0:M-1
For k=0:K-1
E[i*M+m][k*N+n] = C[i][n][m][k];
End for k
End for m
End for n
End fori

Next, also as part of step S4 of FIGS. 2 and 4, the server 40
converts the resulting two-dimensional matrix E[MM][NN]
to a one-dimensional sequence S[4*N*M*K]. Five different
options for performing this step will now be provided. Other
options will be apparent to the skilled person.

A first option uses software based on the pseudo code:

write__idx = 0;
for macro__col_idx = 0:K-1
col__base = macro__col__idx*N;
for macro__row__idx = 0:3
row__base = macro__row__idx*M;
for col__idx=0:2:N-1
for row__idx=0:M-1
S[write_idx] =
E[row__base+row__idx][col_base+col_idx];
write__idx = write__idx + 1;
End for row__idx
for row__idx=M-1:-1:0
S[write_idx] =
E[row__base+row__idx][col__base+col__idx+i];
write__idx = write__idx + 1;
End for row__idx
End for col__idx
End for macro__row__idx
End for macro__col__idx

A second option uses software based on the pseudo code:

write__idx = 0;
for macro_ row__idx =0:3
row__base = macro__row__idx*M;
for macro__col__idx = 0:K-1
col__base = macro__col__idx*N;
for col_idx=0:2:N-1
for row__idx=0:M-1
S[write__idx] =
E[row__base+row__idx][col_base+col_idx];
write__idx = write__idx + 1;
End for row__idx
for row__idx=M-1:-1:0

10

15

20

25

30

35

40

45

50

55

60

65

20

-continued

S[write__idx] =
E[row__base+row__idx][col_base+col__idx+1];
write__idx = write__idx + 1;
End for row__idx
End for col__idx
End for macro__row__idx
End for macro__col__idx

A third option uses software based on the pseudo code:

write__idx = 0;
for col__idx=0:2:N*K-1

for row__idx=0:M*4-1
S[write__idx] = E[row__idx][col__idx];
write__idx = write__idx + 1;

End for row__idx

for row__idx=M*4-1:-1:0
S[write_idx] = E[row__idx][col__idx+1];
write__idx = write__idx + 1;

End for row__idx

End for col__idx

A fourth option uses software based on the pseudo code:

write__idx = 0;
for col__idx=0:N*K-1
for row__idx=0:M*4-1
S[write__idx] = E[row__idx][col__idx];
write__idx = write__idx + 1;
End for row__idx
End for col_idx

A fifth option uses software based on the pseudo code:

write__idx = 0;
for row__idx=0:M*4-1
for col__idx=0:N*K-1
S[write_idx] = E[row__idx][col_idx];
write__idx = write__idx + 1;
End for col__idx
End for row__idx

Before generating a differential sequence, each element of
S[4*N*M*K] is divided by 2 (or less preferably another
integer multiple of 2) by the server 40. Dividing by two
prevents overflow. This is not shown as a separate step in the
Figures.

Next, at step S5 of FIG. 2 or FIG. 4, the server 40 generates
a first order differential sequence D1[4*N*M*K-1] from
S[4*N*M*K]. For instance, this can be achieved using soft-
ware based on the following pseudo code:

For i=0: 4*N*M*K-2
D1[i] = S[i+1] - S[i];
End fori

Where a second order differential sequence is provided, as
described with reference to FIG. 4, the second order differ-
ential sequence D2[4*N*M*K-2] is produced from the first
order differential sequence D1[4*N*M*K-1] at step S6. For
instance, this can be achieved using software based on the
following pseudo code:

US 9,404,995 B2

21

For i=0: 4*N*M*K-3
D2[i] = D1[i+1] - D1[i];
End fori

The first or second order differential sequence (with start
value(s)) is then stored into a binary file.

For the first order compression of FIG. 2, this can be
performed by the server 40 writing S[0] and D1[4*N*M*
K-1] sequentially into a binary file.

For the second order compression of FIG. 4, this can be
performed by the server 40 writing S[0], D1[0] and
D2[4*N*M*K-2] sequentially into a binary file.

At step S7 of FIG. 2 or step S8 of FIG. 4, the server 40
compresses the binary file using a DEFLATE algorithm, such
as gzip or 7-zip in Linux.

Atstep S10 of FIG. 2 or step S11 of FIG. 4, the compressed
binary file is transmitted or broadcast by the beacon 30
through a BT LE channel to a device 11, 12 which requires to
use a positioning service provided by the beacon 30.

Some of the operation of the mobile device 11, 12 will now
be described.

The mobile device 11, 12 decompresses the received
binary file to obtain the first or second order differential
sequence. In the decompression operation of FIG. 3, S[0] and
D1[4*N*M*K-1] are obtained from the decompressed file.
In the decompression operation of FIG. 5, S[0], D1[0] and
D2[4*N*M*K-2] are obtained from the decompressed file.

The mobile device 11, 12 recovers S[4*N*M*K] from the
differential sequence by accumulation.

In the decompression operation of FIG. 3, the mobile
device 11, 12 recovers S[4*N*M*K] from the first order
differential sequence. The recovered version is denoted
R[4*N*M*K]. For instance, this can be achieved using soft-
ware based on the following pseudo code:

// copy sequence

R[0] = S[0];

For i=1: 4*N*M*K-1
R[i] = D1[i-1];

End fori

// one round accumulation

For i=1: 4*N*M*K-1
R[i] = R[i-1] + R[i];

End fori

The mobile device 11, 12 multiplies each element of
R[4*N*M*K] by 2, which is the inverse of the division by two
performed in the server 40.

In the decompression operation of FIG. 5, the mobile
device 11, 12 recovers S[4*N*M*K] from the second order
differential sequence. The recovered version is noted as
R[4*N*M*K]. For instance, this can be achieved using soft-
ware based on the following pseudo code:

// copy sequence
R[0] = S[0];
R[1] = D1[0];
For i=2: 4*N*M*K-1
R[i] = D2[i-2];
End fori
// two round accumulation
For i=2: 4*N*M*K-1
R[i] = R[i-1] + R[i];
End fori

10

20

35

40

45

50

60

65

22

-continued

For i=1: 4*N*M*K-1
R[i] = R[i-1] + R[i];
End fori

Multiple each element of R[4*N*M*K] by 2 as an inverse
procedure in the beginning of step 3).

The mobile device 11, 12 then converts the resulting one-
dimensional sequence R[4*N*M*K] back into a four-dimen-
sional calibration matrix C[4][N][M][K] using the inverse of
the procedure performed by the server 40.

The mobile device 11, 12 then recovers the original cali-
bration data by performing a fixed to float conversion. This
can be performed using the inverse of the procedure per-
formed by the server 40, for instance by using a forced type
conversion in the C language (for example) to convert each
signed fixed point data element to a float type data element.
Each float data element may be processed by: x=x/G; where
for example numbits=8.

A number of tests have been performed using different
compression options, and the results are shown in Table 1
below. For these results, parameter values are: numbits=S8,
N=46, M=180, K=15. The size of the original float type data
calibration matrix is 1987.2 kB (1.9872 MB). Two different
DEFLATE algorithms were used.

Compression method (combination

of conversion, order of differential Compressed ~ Compression
sequence (DS), algorithm) size (kB) ratio

First 2D — 1% order DS 7-zip 87.757 22.6443
1D conversion gzip 110.241 18.0260
option 2nd order DS 7-zip 83.754 23.7266

ezip 100.848 19.7049
Second 2D — 1% order DS 7-zip 88.241 22.5201
1D conversion gzip 111.055 17.8938
option 2nd order DS 7-zip 84.214 23.5970

ezip 101.006 19.6741
Third 2D — 1% order DS 7-zip 89.553 22.1902
1D conversion gzip 110.773 17.9394
option 2nd order DS 7-zip 85.504 23.2410

ezip 103.867 19.1322
Fourth 2D — 1% order DS 7-zip 86.646 22.9347
1D conversion gzip 108.855 18.2555
option 2nd order DS 7-zip 84.954 23.3915

ezip 103.604 19.1807
Fifth 2D — 1% order DS 7-zip 104.73 18.9745
1D conversion gzip 127.131 15.6311
option 2nd order DS 7-zip 108.382 18.3351

ezip 130.144 15.2692

It will be seen from the above that using the 7-zip

DEFLATE algorithm to provide a second order differential
sequence provided the highest compression ratio, although
many of the other options also provide satisfactory results.

It will be appreciated that the above-described embodi-
ments are not limiting on the scope of the invention, which is
defined by the appended claims and their alternatives. Various
alternative implementations will be envisaged by the skilled
person, and all such alternatives are intended to be within the
scope of the claims. A number of alternatives will now be
described.

Different sets of calibration data may be identified by a
version number. The version number may be part of the
antenna type identifier, which is transmitted in advertising
packets in parallel with the positioning packets. In this way,
the positioning packets may not need to be provided with a
version number or other data identifying the calibration data
set.

US 9,404,995 B2

23

The positioning advertisement messages may be transmit-
ted on BLE advertising channels, or the information commu-
nicated to the mobile devices 11, 12 in the positioning adver-
tisement messages may be communicated in some other way.
For instance, the positioning advertisement messages may be
broadcast on one or more BLE data channels, for instance in
SCAN_RSP containers.

Indeed, the invention is not limited to BLE. It will be
appreciated that the concept underlying the above-described
embodiments, as defined in the claims, is applicable to other
systems in which the same considerations (e.g. limited band-
width, positioning resolution etc.) are applicable. Other sys-
tems to which the invention may be applied and which are
intended to be covered by the claims include unidirectional
and bidirectional systems both present and future. Systems to
which the invention may be applied include WiFi systems,
pseudolite-based systems and such like.

Embodiments of the present invention may be imple-
mented in software, hardware, application logic or a combi-
nation of software, hardware and application logic. The soft-
ware, application logic and/or hardware may reside on
memory, or any computer media. In an example embodiment,
the application logic, software or an instruction set is main-
tained on any one of various conventional computer-readable
media. In the context of this document, a “computer-readable
medium” may be any media or means that can contain, store,
communicate, propagate or transport the instructions for use
by or in connection with an instruction execution system,
apparatus, or device, such as a computer.

A computer-readable medium may comprise a computer-
readable storage medium that may be any tangible media or
means that can contain or store the instructions for use by or
in connection with an instruction execution system, appara-
tus, or device, such as a computer as defined previously.

According to various embodiments of the previous aspect
of the present invention, the computer program according to
any of the above aspects, may be implemented in a computer
program product comprising a tangible computer-readable
medium bearing computer program code embodied therein
which can be used with the processor for the implementation
of the functions described above.

Reference to “computer-readable storage medium”, “com-
puter program product”, “tangibly embodied computer pro-
gram” etc, or a “processor” or “processing circuit” etc. should
be understood to encompass not only computers having dif-
fering architectures such as single/multi processor architec-
tures and sequencers/parallel architectures, but also special-
ised circuits such as field programmable gate arrays FPGA,
application specify circuits ASIC, signal processing devices
and other devices. References to computer program, instruc-
tions, code etc. should be understood to express software for
a programmable processor firmware such as the program-
mable content of a hardware device as instructions for a
processor or configured or configuration settings for a fixed
function device, gate array, programmable logic device, etc.

If desired, the different functions discussed herein may be
performed in a different order and/or concurrently with each
other. Furthermore, if desired, one or more of the above-
described functions may be optional or may be combined.

Although various aspects of the invention are set out in the
independent claims, other aspects of the invention comprise
other combinations of features from the described embodi-
ments and/or the dependent claims with the features of the
independent claims, and not solely the combinations explic-
itly set out in the claims.

10

15

20

25

30

35

40

45

50

55

60

24

The invention claimed is:
1. Apparatus, comprising at least one processor, at least one
memory, and computer-readable code stored on the at least
one memory, wherein the computer-readable code when
executed controls the at least one processor to perform a
method comprising:
storing a four-dimensional matrix of fixed point calibration
data; rearranging the four-dimensional matrix of fixed
point calibration data into a one-dimensional sequence;

calculating a differential sequence of the one-dimensional
sequence;

saving the differential sequence and a first element of the

one-dimensional sequence into a binary file; and
compressing the binary file using a DEFLATE algorithm.

2. Apparatus as claimed in claim 1, wherein the computer-
readable code when executed controls the at least one proces-
sor to perform: quantising a four-dimensional matrix of float
type calibration data to provide the four-dimensional matrix
of fixed point calibration data.

3. Apparatus as claimed in claim 1, wherein the fixed point
calibration data is signed fixed point calibration data.

4. Apparatus as claimed in claim 1, wherein the computer-
readable code when executed controls the at least one proces-
sor to perform:

calculating a differential sequence of the one-dimensional

sequence by calculating a first order differential
sequence; and

saving the first order differential sequence and a first ele-

ment of the one-dimensional sequence into the binary
file.

5. Apparatus as claimed in claim 1, wherein the computer-
readable code when executed controls the at least one proces-
sor to perform:

calculating a differential sequence of the one-dimensional

sequence by: calculating a first order differential
sequence, and calculating a differential sequence of the
first order differential sequence

to provide a second order differential sequence; and

saving the second order differential sequence, a first ele-

ment of the one dimensional sequence and a first ele-
ment of the first order differential sequence into the
binary file.

6. Apparatus as claimed in claim 1, wherein the computer-
readable code when executed controls the at least one proces-
sor to perform: rearranging the four-dimensional matrix of
fixed point calibration data into a one-dimensional sequence
by converting the four-dimensional matrix of fixed point cali-
bration data into a two-dimensional matrix and then convert-
ing the two-dimensional matrix into the one-dimensional
sequence.

7. Apparatus as claimed in claim 1, wherein the computer-
readable code when executed controls the at least one proces-
sor to perform: calculating the differential sequence of the
one-dimensional sequence by:

dividing each element of the one-dimensional sequence by

an integer multiple of two; and

calculating the differential sequence from the resulting

elements.

8. Apparatus, comprising at least one processor, at least one
memory, and computer-readable code stored on the at least
one memory, wherein the computer-readable code when
executed controls the at least one processor to perform a
method comprising:

receiving a binary data file;

decompressing the binary data file using a DEFLATE algo-

rithm to provide a differential sequence and a first ele-
ment of a one-dimensional sequence;

US 9,404,995 B2

25

accumulating the differential sequence using the first ele-
ment to provide a one-dimensional sequence;

rearranging the one-dimensional sequence into a four-di-
mensional calibration data; and storing the four-dimen-
sional matrix of calibration data.

9. Apparatus as claimed in claim 8, wherein the computer-
readable code when executed controls the at least one proces-
sor to perform: converting fixed point data of the one-dimen-
sional sequence or the four-dimensional matrix into float type
calibration data; and storing the four-dimensional matrix of
calibration data as float type calibration data.

10. Apparatus as claimed in claim 8, wherein the computer-
readable code when executed controls the at least one proces-
sor to perform: accumulating the differential sequence to
provide the one-dimensional sequence in a single round.

11. Apparatus as claimed in claim 8, wherein the computer-
readable code when executed controls the at least one proces-
sor to perform:

decompressing the binary data file using a DEFLATE algo-
rithm to provide a second order differential sequence, a
first element of a first order differential sequence and a
first element of the one-dimensional sequence;

accumulating the second order differential sequence using
the first element of the first order differential sequence to
provide a first order differential sequence; and

accumulating the first order differential sequence using the
first element of the one-dimensional sequence to provide
the one-dimensional sequence.

12. Apparatus as claimed in claim 8, wherein the computer-
readable code when executed controls the at least one proces-
sor to perform:

rearranging the one-dimensional sequence into the four-
dimensional matrix of calibration data by converting the
one-dimensional sequence into a two-dimensional
matrix and then converting the two-dimensional matrix
into the four-dimensional matrix of calibration data.

13. Apparatus as claimed in claim 8, wherein the computer-
readable code when executed controls the at least one proces-
sor to perform:

accumulating the differential sequence to provide the one-
dimensional sequence by accumulating the differential
sequence to provide plural elements then multiplying
each element by a positive integer multiple of two to
provide the one-dimensional sequence.

14. A data structure comprising:

a binary file of compressed data that is configured to be
decompressable into a four-dimensional matrix of cali-
bration data by a method comprising:

decompressing the binary data file using a DEFLATE algo-
rithm to provide a differential sequence and a first ele-
ment of a one-dimensional sequence;

15

25

40

45

26

accumulating the differential sequence using the first ele-
ment to provide a one-dimensional sequence;

rearranging the one-dimensional sequence into a four-di-
mensional calibration data; and

storing the four-dimensional matrix of calibration data.

15. A data structure as claimed in claim 14, wherein the
binary file of compressed data is configured to be decom-
pressable into the four-dimensional matrix of calibration data
by:

converting fixed point data of the one-dimensional

sequence or the four-dimensional matrix into float type
calibration data; and

storing the four-dimensional matrix of calibration data as

float type calibration data.
16. A data structure as claimed in claim 14, wherein the
binary file of compressed data is configured to be decom-
pressable into the four-dimensional matrix of calibration data
by accumulating the differential sequence to provide the one-
dimensional sequence in a single round.
17. A data structure as claimed in claim 14, wherein the
binary file of compressed data is configured to be decom-
pressable into the four-dimensional matrix of calibration data
by:
decompressing the binary data file using a DEFLATE algo-
rithm to provide a second order differential sequence, a
first element of a first order differential sequence and a
first element of the one-dimensional sequence;

accumulating the second order differential sequence using
the first element of the first order differential sequence to
provide a first order differential sequence; and accumu-
lating the first order differential sequence using the first
element of the one-dimensional sequence to provide the
one-dimensional sequence.

18. A data structure as claimed in claim 14, wherein the
binary file of compressed data is configured to be decom-
pressable into the four-dimensional matrix of calibration data
by: rearranging the one-dimensional sequence into the four-
dimensional matrix of calibration data by converting the one-
dimensional sequence into a two-dimensional matrix and
then converting the two-dimensional matrix into the four-
dimensional matrix of calibration data.

19. A data structure as claimed in claim 14, wherein the
binary file of compressed data is configured to be decom-
pressable into the four-dimensional matrix of calibration data
by: accumulating the differential sequence to provide the
one-dimensional sequence by accumulating the differential
sequence to provide plural elements then multiplying each
element by a positive integer multiple of two to provide the
one-dimensional sequence.

#* #* #* #* #*

